Recent advances in metacommunities and meta-ecosystem theories

F1000Res. 2017 May 2:6:610. doi: 10.12688/f1000research.10758.1. eCollection 2017.

Abstract

Metacommunity theory has provided many insights into the general problem of local versus regional control of species diversity and relative abundance. The metacommunity framework has been extended from competitive interactions to whole food webs that can be described as spatial networks of interaction networks. Trophic metacommunity theory greatly contributed to resolving the community complexity-stability debate by predicting its dependence on the regional spatial context. The meta-ecosystem framework has since been suggested as a useful simplification of complex ecosystems to apply this spatial context to spatial flows of both individuals and matter. Reviewing the recent literature on metacommunity and meta-ecosystem theories suggests the importance of unifying theories of interaction strength into a meta-ecosystem framework that captures how the strength of spatial, species, and ecosystem fluxes are distributed across location and trophic levels. Such integration predicts important feedback between local and regional processes that drive the assembly of species, the stability of community, and the emergence of ecosystem functions, from limited spatial fluxes of individuals and (in)organic matter. These predictions are often mediated by the maintenance of environmental or endogenous fluctuations from local to regional scales that create important challenges and opportunities for the validation of metacommunity and meta-ecosystem theories and their application to conservation.

Keywords: conservation; ecosystem theories; metacommunities.

Publication types

  • Review

Grants and funding

The author wishes to acknowledge funding from the Natural Science and Engineering Research Council of Canada.