Topoisomerases solve critical topological problems in DNA metabolism and have long been regarded as the "magicians" of the DNA world. Here we present views from 2 of our recent studies indicating that Type IA topoisomerases from all domains of life often possess dual topoisomerase activities for both DNA and RNA. In animals, one of the 2 Type IA topoisomerases, Top3β, contains an RNA-binding domain, possesses RNA topoisomerase activity, binds mRNAs, interacts with mRNA-binding proteins, and associates with active mRNA translation machinery. The RNA-binding domain is required for Top3β to bind mRNAs and promote normal neurodevelopment. Top3β forms a highly conserved complex with Tudor-domain-containing 3 (TDRD3), a protein known to interact with translation factors, histones, RNA polymerase II, single stranded DNA and RNA. Top3β requires TDRD3 for its association with the mRNA translation machinery. We suggest that Type IA topoisomerases can be "magicians" for not only DNA, but also RNA; and they may solve topological problems for both nucleic acids in all domains of life. In animals, Top3β-TDRD3 is a dual-activity topoisomerase complex that can act on DNA to stimulate transcription, and on mRNA to promote translation.
Keywords: FMRP; TDRD3; Top3α; Top3β; polyribosomes; topoisomerase.