Inhibition of Neddylation Modification Sensitizes Pancreatic Cancer Cells to Gemcitabine

Neoplasia. 2017 Jun;19(6):509-518. doi: 10.1016/j.neo.2017.04.003. Epub 2017 May 20.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA with a 5-year survival rate less than 3% to 5%. Gemcitabine remains as a standard care for PDAC patients. Although protein neddylation is abnormally activated in many human cancers, whether neddylation dysregulation is involved in PDAC and whether targeting neddylation would sensitize pancreatic cancer cells to gemcitabine remain elusive. Here we report that high expression of neddylation components, NEDD8 and NAE1, are associated with poor survival of PDAC patients. Blockage of neddylation by MLN4924, a small molecule inhibitor targeting this modification, significantly sensitizes pancreatic cancer cells to gemcitabine, as evidenced by reduced growth both in monolayer culture and soft agar, reduced clonogenic survival, decreased invasion capacity, increased apoptosis, G2/M arrest, and senescence. Importantly, combinational treatment of MLN4924-gemcitabine near completely suppressed in vivo growth of pancreatic cancer cells. Mechanistically, accumulation of NOXA, a pro-apoptotic protein and ERBIN, a RAS signal inhibitor, appears to play, at least in part, a causal role in MLN4924 chemo-sensitization. Our study demonstrates that neddylation modification is a valid target for PDAC, and provides the proof-of-concept evidence for future clinical trial of MLN4924-gemcitabine combination for the treatment of pancreatic cancer patients.

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Adenocarcinoma / genetics
  • Adenocarcinoma / pathology
  • Adult
  • Aged
  • Apoptosis / drug effects
  • Carcinoma, Pancreatic Ductal / drug therapy*
  • Carcinoma, Pancreatic Ductal / genetics
  • Carcinoma, Pancreatic Ductal / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cyclopentanes / administration & dosage
  • Deoxycytidine / administration & dosage
  • Deoxycytidine / analogs & derivatives
  • Female
  • Gemcitabine
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Middle Aged
  • NEDD8 Protein / genetics*
  • Pyrimidines / administration & dosage
  • Ubiquitin-Activating Enzymes / genetics*
  • Ubiquitins / genetics
  • Xenograft Model Antitumor Assays

Substances

  • Cyclopentanes
  • NEDD8 Protein
  • NEDD8 protein, human
  • Pyrimidines
  • Ubiquitins
  • Deoxycytidine
  • Ubiquitin-Activating Enzymes
  • NAE protein, human
  • pevonedistat
  • Gemcitabine