Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable Photodynamic Therapy

ACS Nano. 2017 Jun 27;11(6):5864-5872. doi: 10.1021/acsnano.7b01505. Epub 2017 May 26.

Abstract

Persistent luminescence nanoparticles (PLNPs) have been used for bioimaging without autofluorescence background interference, but the poor afterglow performance impedes their further applications in cancer therapy. To overcome the Achilles' heel of PLNPs, herein we report the construction of injectable persistent luminescence implants (denoted as PL implants) as a built-in excitation source for efficient repeatable photodynamic therapy (PDT). The injectable ZGC (ZnGa1.996O4:Cr0.004) PL implants were prepared by dissolving ZGC PLNPs in poly(lactic-co-glycolic acid)/N-methylpyrrolidone oleosol, which demonstrated much stronger persistent luminescence (PersL) intensity and longer PersL lifetime than that of ZGC PLNPs both in vitro and in vivo. More importantly, the intratumorally fixed ZGC PL implants can serve as a built-in excitation source for repeatable light emitting diode (LED) and PersL-excited PDT upon and after periodic LED irradiation, which leads to the overall improvement of therapeutic effectiveness for efficient tumor growth suppression. This work represents efficient repeatable PDT based on the injectable yet periodically rechargeable ZGC PL implants.

Keywords: afterglow; built-in; persistent luminescence implants; phase transformation; photodynamic therapy.

Publication types

  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Chromium / administration & dosage
  • Chromium / chemistry
  • Chromium / therapeutic use*
  • Gallium / administration & dosage
  • Gallium / chemistry
  • Gallium / therapeutic use*
  • Humans
  • Injections
  • Luminescence
  • Luminescent Agents / administration & dosage
  • Luminescent Agents / chemistry
  • Luminescent Agents / therapeutic use*
  • Mice
  • Nanoparticles / administration & dosage
  • Nanoparticles / chemistry
  • Nanoparticles / therapeutic use*
  • Neoplasms / drug therapy*
  • Photochemotherapy / methods*
  • Polylactic Acid-Polyglycolic Acid Copolymer / administration & dosage
  • Polylactic Acid-Polyglycolic Acid Copolymer / chemistry
  • Polylactic Acid-Polyglycolic Acid Copolymer / therapeutic use
  • Zinc / administration & dosage
  • Zinc / chemistry
  • Zinc / therapeutic use*

Substances

  • Luminescent Agents
  • Chromium
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Gallium
  • Zinc