Cage-Walking: Vertex Differentiation by Palladium-Catalyzed Isomerization of B(9)-Bromo-meta-Carborane

J Am Chem Soc. 2017 Jun 14;139(23):7729-7732. doi: 10.1021/jacs.7b04080. Epub 2017 Jun 1.

Abstract

We report the first observed Pd-catalyzed isomerization ("cage-walking") of B(9)-bromo-meta-carborane during Pd-catalyzed cross-coupling, which enables the formation of B-O and B-N bonds at all boron vertices (B(2), B(4), B(5), and B(9)) of meta-carborane. Experimental and theoretical studies suggest this isomerization mechanism is strongly influenced by the steric crowding at the Pd catalyst by either a biaryl phosphine ligand and/or substrate. Ultimately, this "cage-walking" process provides a unique pathway to preferentially introduce functional groups at the B(2) vertex using B(9)-bromo-meta-carborane as the sole starting material through substrate control.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.