Improvement of non-key traits in radiata pine breeding programme when long-term economic importance is uncertain

PLoS One. 2017 May 18;12(5):e0177806. doi: 10.1371/journal.pone.0177806. eCollection 2017.

Abstract

Diameter at breast height (DBH), wood density (DEN) and predicted modulus of elasticity (PME) are considered as 'key traits' (KT) in the improvement in radiata pine breeding programmes in New Zealand. Any other traits which are also of interest to radiata pine breeders and forest growers are called 'non-key traits' (NKTs). External resin bleeding (ERB), internal checking (IC), number of heartwood rings (NHR) are three such non-key traits which affect wood quality of radiata pine timber. Economic importance of the KTs and NKTs is hard to define in radiata pine breeding programmes due to long rotation period. Desired-gain index (DGIs) and robust selection were proposed to incorporate NKTs into radiata pine breeding programme in order to deal with the uncertainty of economic importance. Four desired-gain indices A-D were proposed in this study. The desired-gain index A (DGI-A) emphasized growth and led to small decrease in ERB and small increase in IC and NHR. The expected genetic gains of all traits in the desired-gain index B (DGI-B) were in the favourable directions (positive genetic gains in the key traits and negative genetic gains in the non-key traits). The desired-gain index C (DGI-C) placed emphasis on wood density, leading to favourable genetic gain in the NKTs but reduced genetic gains for DBH and PME. The desired-gain index D (DGI-D) exerted a bit more emphasis on the non-key traits, leading large favourable reduction in the non-key traits and lower increase in the key traits compared with the other DGIs. When selecting both the key traits and the non-key traits, the average EBVs of six traits were all in the same directions as the expected genetic gains except for DBH in the DGI-D. When the key traits were measured and selected, internal checking always had a negative (favourable) genetic gain but ERB and NHR had unfavourable genetic gain in the most of time. After removing some individuals with high sensitivity to the change of economic weights, robust desired-gain selection made genetic gains of all the key and non-key traits to move a little bit toward unfavourable directions in the four indices. It is concluded that desired-gain index combined with robust selection concept is an efficient way for selecting the key and non-key traits in radiata pine breeding programmes.

MeSH terms

  • Breeding / economics*
  • Elasticity
  • Pinus / chemistry
  • Pinus / genetics
  • Pinus / growth & development*
  • Uncertainty*
  • Wood / chemistry

Grants and funding

The authors acknowledge the Radiata Pine Breeding Company for providing funding for this manuscript. The funder (the Radiata Pine Breeding Company) provided funding and data for this study and reviewed the manuscript.