Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50cGy/min) and relatively low (0.33cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50cGy of 28Si (energy: 300MeV/n; LET: 70keV/μm) or 56Fe (energy: 1000MeV/n; LET: 148keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n=20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor frequency and size was similar irrespective of energetic heavy ion radiation dose rate suggesting that carcinogenic potential of energetic heavy ions is independent of dose rate.
Keywords: Colorectal cancer; Heavy ion radiation; Intestinal tumorigenesis, APC mutant mouse model; Low dose and dose rate; Space radiation.
Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.