Atheroprotective effects of statins in patients with unstable angina by regulating the blood-borne microRNA network

Mol Med Rep. 2017 Jul;16(1):817-827. doi: 10.3892/mmr.2017.6616. Epub 2017 May 24.

Abstract

Experimental studies have demonstrated several effects of statins in acute coronary syndrome (ACS) that may extend their clinical benefit beyond the lipid profile modification itself. However, the precise underlying mechanism remains to be elucidated. microRNAs (miRNAs) serve significant roles in the pathophysiology of atherosclerotic plaque progression. The present study investigated the protective role of statins in patients with unstable angina (UA) by regulating the circulating miRNA network. miRNA array results demonstrated that there were 21 differentially expressed miRNAs in non‑statin‑treated patients with UA (n=8) compared with non‑coronary artery disease controls (n=8), and 33 differentially expressed miRNAs in statin‑treated patients with UA (n=8) compared with non‑statin patients. TargetScan and miRanda programs were used to predict miRNAs target genes. miRNAs target genes in vascular endothelial cells and monocytes were clustered based on the CGAP SAGE library via the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform, and miRNA target genes in platelets were clustered based on a UP tissue‑specific library via the DAVID platform. The PANTHER database via DAVID platform was used to perform signaling pathway analysis. The miRNA‑gene/pathway network was visualized by Cytoscape software. Bioinformatic analysis suggested that statin‑induced miRNAs functions were primarily enriched in angiogenesis, integrin and platelet derived growth factor signaling pathways in UA patients. In endothelial cells and platelets, statin‑induced miRNAs primarily targeted the integrin signaling pathway, and in monocytes primarily targeted cytoskeletal regulation by the Rho GTPase signaling pathway. These results revealed that statins may serve systematic protective roles in UA patients by influencing the circulating miRNA regulatory network. Further studies are required to verify the functions of statin‑induced miRNAs in endothelial cells, platelets and monocytes.

MeSH terms

  • Aged
  • Angina, Unstable / diagnosis
  • Angina, Unstable / drug therapy
  • Angina, Unstable / genetics*
  • Angina, Unstable / metabolism
  • Circulating MicroRNA*
  • Computational Biology
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation / drug effects*
  • Gene Regulatory Networks
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology*
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / therapeutic use
  • Integrins / genetics
  • Integrins / metabolism
  • Male
  • MicroRNAs / genetics*
  • Middle Aged
  • Neovascularization, Pathologic / genetics
  • Neovascularization, Pathologic / metabolism
  • Plaque, Atherosclerotic / drug therapy
  • Plaque, Atherosclerotic / genetics
  • Plaque, Atherosclerotic / metabolism
  • Plaque, Atherosclerotic / pathology
  • Platelet-Derived Growth Factor / metabolism
  • Signal Transduction / drug effects

Substances

  • Circulating MicroRNA
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Integrins
  • MicroRNAs
  • Platelet-Derived Growth Factor