Role of Free Radicals and Biotransformation in Trichloronitrobenzene-Induced Nephrotoxicity In Vitro

Int J Mol Sci. 2017 May 31;18(6):1165. doi: 10.3390/ijms18061165.

Abstract

This study determined the comparative nephrotoxic potential of four trichloronitrobenzenes (TCNBs) (2,3,4-; 2,4,5-; 2,4,6-; and 3,4,5-TCNB) and explored the effects of antioxidants and biotransformation inhibitors on TCNB-induced cytotoxicity in isolated renal cortical cells (IRCC) from male Fischer 344 rats. IRCC were incubated with a TCNB up to 1.0 mM for 15-120 min. Pretreatment with an antioxidant or cytochrome P450 (CYP), flavin monooxygenase (FMO), or peroxidase inhibitor was used in some experiments. Among the four TCNBs, the order of decreasing nephrotoxic potential was approximately 3,4,5- > 2,4,6- > 2,3,4- > 2,4,5-TCNB. The four TCNBs exhibited a similar profile of attenuation of cytotoxicity in response to antioxidant pretreatments. 2,3,4- and 3,4,5-TCNB cytotoxicity was attenuated by most of the biotransformation inhibitors tested, 2,4,5-TCNB cytotoxicity was only inhibited by isoniazid (CYP 2E1 inhibitor), and 2,4,6-TCNB-induced cytotoxicity was inhibited by one CYP inhibitor, one FMO inhibitor, and one peroxidase inhibitor. All of the CYP specific inhibitors tested offered some attenuation of 3,4,5-TCNB cytotoxicity. These results indicate that 3,4,5-TCNB is the most potent nephrotoxicant, free radicals play a role in the TCNB cytotoxicity, and the role of biotransformation in TCNB nephrotoxicity in vitro is variable and dependent on the position of the chloro groups.

Keywords: antioxidants; biotransformation; in vitro; nephrotoxicity; trichloronitrobenzenes.

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Biotransformation / drug effects
  • Cell Survival / drug effects
  • Cytochrome P-450 Enzyme Inhibitors / pharmacology
  • Fatty Acid Synthesis Inhibitors / pharmacology
  • Free Radicals / metabolism*
  • Hydrocarbons, Chlorinated
  • Isoniazid / pharmacology
  • Kidney Cortex / cytology
  • Kidney Cortex / drug effects*
  • Kidney Cortex / metabolism
  • Male
  • Rats, Inbred F344

Substances

  • Antioxidants
  • Cytochrome P-450 Enzyme Inhibitors
  • Fatty Acid Synthesis Inhibitors
  • Free Radicals
  • Hydrocarbons, Chlorinated
  • chloropicrin
  • Isoniazid