ENVIRONMENTAL AND GENETIC MATERNAL EFFECTS ON SEED CHARACTERS IN NEMOPHILA MENZIESII

Evolution. 1993 Apr;47(2):540-555. doi: 10.1111/j.1558-5646.1993.tb02112.x.

Abstract

Nuclear genetic, maternal genetic and maternal environmental effects on seed characters were estimated in the California native annual plant Nemophila menziesii using two greenhouse crosses. In one cross, according to a nested mating design, the narrow sense heritability of seed weight was small (3.9%). A subset of full-sib progenies produced in this cross was grown singly and in competition with the introduced grass Bromus diandrus. In a second cross, these plants were used as mothers (dams) and were each mated to the same three sires. Seeds produced by mothers competing with B. diandrus showed a significant reduction in weight, increase in time to germination, and increase in the incidence of dormancy, when compared to seeds from mothers grown singly. Significant sire components were found for time to germination and incidence of dormancy. Maternal genetic variation for seed weight was largely expressed as maternal genotype by maternal environment interaction, and showed no significant maternal genetic main effect. Time to germination and dormant fraction showed a relatively large maternal genetic effect. Evolution of seed characters in N. menziesii is more likely to occur via indirect response to selection among maternal plants than among the seeds themselves. Maternal genotype by maternal environment interaction could potentially contribute to the maintenance of maternal genetic variation in seed weight, but this does not appear likely for dormancy.

Keywords: Competition; Nemophila menziesii; dormancy; genotype-environment interaction; germination; maternal effects; seed weight.