Superoxide dismutase 2 (SOD2) is essential in radical scavenging, which balances the intracellular level of reactive oxygen species (ROS). The dysfunction of SOD2 is associated with increasing incidence of various human diseases, including cancer, neuron diseases, and myocardial defects. However, the connections between SOD2-mediated oxidative homeostasis and innate immune response remain unclear. In this study, we report that SOD2 is a crucial regulator of antiviral signaling. Depletion of SOD2 impairs RNA virus-induced type I interferon (IFN) and proinflammatory cytokine production, resulting in enhanced viral replication. Type I IFN production is highly sensitive to cellular level of ROS. SOD2 deficiency-mediated ROS accumulation potently inhibits RIG-I-like receptor (RLR)-induced innate immune responses through the regulation of nuclear factor-kappa B (NF-κB) and interferon regulatory factor-3 activation. These findings uncover a novel role for SOD2 in regulating RLR-mediated antiviral innate immune signaling.
Keywords: RIG-I-like receptor; ROS; SOD2; antiviral response; interferon.