Multi-level deep supervised networks for retinal vessel segmentation

Int J Comput Assist Radiol Surg. 2017 Dec;12(12):2181-2193. doi: 10.1007/s11548-017-1619-0. Epub 2017 Jun 2.

Abstract

Purpose: Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation.

Methods: A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors.

Results: We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set.

Conclusions: The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

Keywords: Deep supervision; Fully convolutional network; Retinal image; Vessel segmentation.

MeSH terms

  • Diagnostic Techniques, Ophthalmological*
  • Humans
  • Neural Networks, Computer*
  • Retinal Diseases / diagnosis*
  • Retinal Vessels / diagnostic imaging*