E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner

Sci Rep. 2017 Jun 5;7(1):2805. doi: 10.1038/s41598-017-02886-8.

Abstract

γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • B7-2 Antigen / metabolism
  • Cytokines / metabolism*
  • Escherichia coli / immunology*
  • HLA-DR Antigens / metabolism
  • Humans
  • Immunoglobulin G / immunology
  • Lymphocyte Activation / drug effects
  • Lymphocyte Activation / immunology
  • Phagocytes / microbiology*
  • Phagocytes / physiology*
  • Phagocytosis / immunology*
  • Phenotype
  • Receptors, Antigen, T-Cell, gamma-delta / metabolism*
  • T-Lymphocytes / drug effects
  • T-Lymphocytes / immunology*
  • T-Lymphocytes / metabolism*
  • Th1 Cells / immunology
  • Th1 Cells / metabolism
  • Zoledronic Acid / pharmacology

Substances

  • B7-2 Antigen
  • Cytokines
  • HLA-DR Antigens
  • Immunoglobulin G
  • Receptors, Antigen, T-Cell, gamma-delta
  • Zoledronic Acid