Light-Switchable Oxygen Vacancies in Ultrafine Bi5 O7 Br Nanotubes for Boosting Solar-Driven Nitrogen Fixation in Pure Water

Adv Mater. 2017 Aug;29(31). doi: 10.1002/adma.201701774. Epub 2017 Jun 14.

Abstract

Solar-driven reduction of dinitrogen (N2 ) to ammonia (NH3 ) is severely hampered by the kinetically complex and energetically challenging multielectron reaction. Oxygen vacancies (OVs) with abundant localized electrons on the surface of bismuth oxybromide-based semiconductors are demonstrated to have the ability to capture and activate N2 , providing an alternative pathway to overcome such limitations. However, bismuth oxybromide materials are susceptible to photocorrosion, and the surface OVs are easily oxidized and therefore lose their activities. For realistic photocatalytic N2 fixation, fabricating and enhancing the stability of sustainable OVs on semiconductors is indispensable. This study shows the first synthesis of self-assembled 5 nm diameter Bi5 O7 Br nanotubes with strong nanotube structure, suitable absorption edge, and many exposed surface sites, which are favorable for furnishing sufficient visible light-induced OVs to realize excellent and stable photoreduction of atmospheric N2 into NH3 in pure water. The NH3 generation rate is as high as 1.38 mmol h-1 g-1 , accompanied by an apparent quantum efficiency over 2.3% at 420 nm. The results presented herein provide new insights into rational design and engineering for the creation of highly active catalysts with light-switchable OVs toward efficient, stable, and sustainable visible light N2 fixation in mild conditions.

Keywords: Bi5O7Br nanotubes; nitrogen fixation; oxygen vacancies; photocatalysis; visible light.