Background The importance of monitoring of the radiation dose received by the human body during computed tomography (CT) examinations is not negligible. Several dose-monitoring software tools emerged in order to monitor and control dose distribution during CT examinations. Some software tools incorporate Monte Carlo Simulation (MCS) and allow calculation of effective dose and organ dose apart from standard dose descriptors. Purpose To verify the results of a dose-monitoring software tool based on MCS in assessment of effective and organ doses in thoracic CT protocols. Material and Methods Phantom measurements were performed with thermoluminescent dosimeters (TLD LiF:Mg,Ti) using two different thoracic CT protocols of the clinical routine: (I) standard CT thorax (CTT); and (II) CTT with high-pitch mode, P = 3.2. Radiation doses estimated with MCS and measured with TLDs were compared. Results Inter-modality comparison showed an excellent correlation between MCS-simulated and TLD-measured doses ((I) after localizer correction r = 0.81; (II) r = 0.87). The following effective and organ doses were determined: (I) (a) effective dose = MCS 1.2 mSv, TLD 1.3 mSv; (b) thyroid gland = MCS 2.8 mGy, TLD 2.5 mGy; (c) thymus = MCS 3.1 mGy, TLD 2.5 mGy; (d) bone marrow = MCS 0.8 mGy, TLD 0.9 mGy; (e) breast = MCS 2.5 mGy, TLD 2.2 mGy; (f) lung = MCS 2.8 mGy, TLD 2.7 mGy; (II) (a) effective dose = MCS 0.6 mSv, TLD 0.7 mSv; (b) thyroid gland = MCS 1.4 mGy, TLD 1.8 mGy; (c) thymus = MCS 1.4 mGy, TLD 1.8 mGy; (d) bone marrow = MCS 0.4 mGy, TLD 0.5 mGy; (e) breast = MCS 1.1 mGy, TLD 1.1 mGy; (f) lung = MCS 1.2 mGy, TLD 1.3 mGy. Conclusion Overall, in thoracic CT protocols, organ doses simulated by the dose-monitoring software tool were coherent to those measured by TLDs. Despite some challenges, the dose-monitoring software was capable of an accurate dose calculation.
Keywords: Monte Carlo Simulation; Radiation exposure; computed tomography; organ dose; radiation monitoring.