Intestinal cancer progression by mutant p53 through the acquisition of invasiveness associated with complex glandular formation

Oncogene. 2017 Oct 19;36(42):5885-5896. doi: 10.1038/onc.2017.194. Epub 2017 Jun 19.

Abstract

Tumor suppressor TP53 is frequently mutated in colorectal cancer (CRC), and most mutations are missense type. Although gain-of-functions by mutant p53 have been demonstrated experimentally, the precise mechanism for malignant progression in in vivo tumors remains unsolved. We generated ApcΔ716 Trp53LSL•R270H villin-CreER compound mice, in which mutant p53R270H was expressed in the intestinal epithelia upon tamoxifen treatment, and examined the intestinal tumor phenotypes and tumor-derived organoids. Mutant Trp53R270H, but not Trp53-null mutation accelerated submucosal invasion with generation of desmoplastic microenvironment. The nuclear accumulation of p53 was evident in ApcΔ716 Trp53R270H/R270H homozygous tumors like human CRC. Although p53 was distributed to the cytoplasm in ApcΔ716 Trp53+/R270H heterozygous tumors, it accumulated in the nuclei at the invasion front, suggesting a regulation mechanism for p53 localization by the microenvironment. Importantly, mutant p53 induced drastic morphological changes in the tumor organoids to complex glandular structures, which was associated with the acquisition of invasiveness. Consistently, the branching scores of human CRC that carry TP53 mutations at codon 273 significantly increased in comparison with those of TP53 wild-type tumors. Moreover, allografted ApcΔ716 Trp53R270H/R270H organoid tumors showed a malignant histology with an increased number of myofibroblasts in the stroma. These results indicate that nuclear-accumulated mutant p53R270H induces malignant progression of intestinal tumors through complex tumor gland formation and acquisition of invasiveness. Furthermore, RNA sequencing analyses revealed global gene upregulation by mutant p53R270H, which was associated with the activation of inflammatory and innate immune pathways. Accordingly, it is possible that mutant p53R270H induces CRC progression, not only by a cell intrinsic mechanism, but also by the generation or activation of the microenvironment, which may synergistically contribute to the acceleration of submucosal invasion. Therefore, the present study indicates that nuclear-accumulated mutant p53R270H is a potential therapeutic target for the treatment of advanced CRCs.

MeSH terms

  • Adenomatous Polyposis Coli Protein / metabolism
  • Animals
  • Disease Progression
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Intestinal Neoplasms / genetics
  • Intestinal Neoplasms / metabolism
  • Intestinal Neoplasms / pathology*
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / secondary*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred NOD
  • Mice, Knockout
  • Mice, SCID
  • Mutation*
  • Neoplasm Invasiveness
  • Proto-Oncogene Proteins p21(ras) / metabolism
  • Tumor Microenvironment
  • Tumor Suppressor Protein p53 / genetics*
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Adenomatous Polyposis Coli Protein
  • Tumor Suppressor Protein p53
  • adenomatous polyposis coli protein, mouse
  • Hras protein, mouse
  • Proto-Oncogene Proteins p21(ras)