Great Disparity in Photoluminesence Quantum Yields of Colloidal CsPbBr3 Nanocrystals with Varied Shape: The Effect of Crystal Lattice Strain

J Phys Chem Lett. 2017 Jul 6;8(13):3115-3121. doi: 10.1021/acs.jpclett.7b01083. Epub 2017 Jun 22.

Abstract

Understanding the big discrepancy in the photoluminesence quantum yields (PLQYs) of nanoscale colloidal materials with varied morphologies is of great significance to its property optimization and functional application. Using different shaped CsPbBr3 nanocrystals with the same fabrication processes as model, quantitative synchrotron radiation X-ray diffraction analysis reveals the increasing trend in lattice strain values of the nanocrystals: nanocube, nanoplate, nanowire. Furthermore, transient spectroscopic measurements reveal the same trend in the defect quantities of these nanocrystals. These experimental results unambiguously point out that large lattice strain existing in CsPbBr3 nanoparticles induces more crystal defects and thus decreases the PLQY, implying that lattice strain is a key factor other than the surface defect to dominate the PLQY of colloidal photoluminesence materials.