The polyphagous mirid bug Adelphocoris lineolatus relies heavily on olfactory cues to track suitable host plants. Thus, a better understanding of the molecular basis of its olfactory detection could contribute to the development of effective pest management strategies. In the present study, we report the expression profile of the odorant binding protein gene A. lineolatus odorant binding protein 6 (AlinOBP6). Quantitative real-time PCR experiments suggest that AlinOBP6 is female adult antennae-biased. Cellular immunolocalization analyses show that AlinOBP6 is highly expressed in the lymph of both multiporous sensilla basiconica and uniporous sensilla chaetica. A ligand binding analysis showed that recombinant AlinOBP6 not only bound tightly to host plant volatile compounds but also to nonvolatile compounds. Homology modelling and molecular docking analyses confirmed these unusual ligand binding profiles and revealed that the amino acid residues involved in the recognition of volatile and nonvolatile compounds are distinct. The results of our study are the first to suggest that an antenna- and female-biased OBP in an hemipteran insect is expressed in both olfactory and gustatory sensilla as a mechanism to respond to volatile and nonvolatile host compounds. These findings warrant further research into the molecular mechanisms of chemosensation for mirid bugs in responsive to host plant location.
Keywords: Adelphocoris lineolatus; cellular immunolocalization assay; fluorescence competitive binding assays; molecular docking; odorant binding protein; tissues expression profile.
© 2017 The Royal Entomological Society.