Semaphorins are an essential family of guidance cues ubiquitously expressed in various organs, which play diverse developmental, homeostatic, and pathological roles. Semaphorin 3E (Sema3E), initially identified as a neuronal chemorepellent, is involved in the regulation of cell migration, proliferation, and angiogenesis. However, expression and function of Sema3E in allergic asthma has not been extensively investigated. We determined the expression of Sema3E in the airways and its effect on airway inflammation, hyperresponsiveness, and remodeling as pathological features of allergic asthma provoked by house dust mite in vivo. Our data indicate that exposure to house dust mite markedly reduces Sema3E expression in mouse airways. More important, replenishment of Sema3E by intranasal administration of exogenous Sema3E protects mice from allergic asthma by reducing eosinophilic inflammation, serum IgE level, and T helper cell 2/T helper cell 17 cytokine response. The regulatory effect of Sema3E on cytokine response was sustained on allergen recall response in the lymph nodes and spleen. Furthermore, goblet cell hyperplasia, collagen deposition, and airway hyperresponsiveness were significantly diminished on Sema3E treatment. The inhibitory effect of Sema3E was associated with a reduction of pulmonary CD11b+ conventional dendritic cells and regulation of CD4+ T-cell cytokine response. Collectively, our data represent a novel approach to treating allergic asthma via regulation of immune response to house dust mite.
Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.