Assessment of left ventricular (LV) dysfunction is vital in patients with repaired tetralogy of Fallot (rTOF). The early diastolic intraventricular pressure gradient (IVPG) in the LV plays an important role in diastolic function. IVPG is calculated as the intraventricular pressure difference divided by the LV length, which allows to account for differences in LV size and therefore calculate IVPG in children. We aimed to investigate the mechanisms of LV diastolic dysfunction by measuring mid-to-apical IVPG as an indicator of the active suction force sucking blood from the left atrium into the LV. We included 38 rTOF patients and 101 healthy controls. The study population was stratified based on age group into children (4-9 years), adolescents (10-15 years), and adults (16-40 years). IVPGs were calculated based on mitral inflow measurements obtained using color M-mode Doppler echocardiography. Although total IVPGs did not differ between rTOF patients and controls, mid-to-apical IVPGs in adolescents and adults were smaller among rTOF patients than among controls (0.15 ± 0.05 vs. 0.21 ± 0.06 mmHg/cm, p < 0.05; 0.09 ± 0.07 vs. 0.17 ± 0.05 mmHg/cm, p < 0.001; respectively). Additionally, only mid-to-apical IVPG correlated linearly with peak circumferential strain (ρ = 0.217, p = 0.011), longitudinal strain (ρ = -0.231, p = 0.006), torsion (ρ = -0.200, p = 0.018), and untwisting rate in early diastole (ρ = -0.233, p = 0.006). In rTOF, the mechanisms underlying diastolic dysfunction involve reduced active suction force, which correlates with reduced LV deformation in all directions.
Keywords: Diastolic dysfunction; Echocardiography; Intraventricular pressure gradient; Tetralogy of Fallot.