An Interactive, Mobile-Based Tool for Personal Social Network Data Collection and Visualization Among a Geographically Isolated and Socioeconomically Disadvantaged Population: Early-Stage Feasibility Study With Qualitative User Feedback

JMIR Res Protoc. 2017 Jun 22;6(6):e124. doi: 10.2196/resprot.6927.

Abstract

Background: Personal social networks have a profound impact on our health, yet collecting personal network data for use in health communication, behavior change, or translation and dissemination interventions has proved challenging. Recent advances in social network data collection software have reduced the burden of network studies on researchers and respondents alike, yet little testing has occurred to discover whether these methods are: (1) acceptable to a variety of target populations, including those who may have limited experience with technology or limited literacy; and (2) practical in the field, specifically in areas that are geographically and technologically disconnected, such as rural Appalachian Kentucky.

Objective: We explored the early-stage feasibility (Acceptability, Demand, Implementation, and Practicality) of using innovative, interactive, tablet-based network data collection and visualization software (OpenEddi) in field collection of personal network data in Appalachian Kentucky.

Methods: A total of 168 rural Appalachian women who had previously participated in a study on the use of a self-collected vaginal swab (SCVS) for human papillomavirus testing were recruited by community-based nurse interviewers between September 2013 and August 2014. Participants completed egocentric network surveys via OpenEddi, which captured social and communication network influences on participation in, and recruitment to, the SCVS study. After study completion, we conducted a qualitative group interview with four nurse interviewers and two participants in the network study. Using this qualitative data, and quantitative data from the network study, we applied guidelines from Bowen et al to assess feasibility in four areas of early-stage development of OpenEddi: Acceptability, Demand, Implementation, and Practicality. Basic descriptive network statistics (size, edges, density) were analyzed using RStudio.

Results: OpenEddi was perceived as fun, novel, and superior to other data collection methods or tools. Respondents enjoyed the social network survey component, and visualizing social networks produced thoughtful responses from participants about leveraging or changing network content and structure for specific health-promoting purposes. Areas for improved literacy and functionality of the tool were identified. However, technical issues led to substantial (50%) data loss, limiting the success of its implementation from a researcher's perspective, and hindering practicality in the field.

Conclusions: OpenEddi is a promising data collection tool for use in geographically isolated and socioeconomically disadvantaged populations. Future development will mitigate technical problems, improve usability and literacy, and test new methods of data collection. These changes will support goals for use of this tool in the delivery of network-based health communication and social support interventions to socioeconomically disadvantaged populations.

Keywords: Appalachia; cancer screening; diffusion of innovations; health disparities; low literacy; mobile surveys; personal networks; rural health; social network analysis; social networks; survey development; survey implementation.