The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat

Hepatology. 2018 Jan;67(1):282-295. doi: 10.1002/hep.29327. Epub 2017 Nov 19.

Abstract

The gut microbiota possesses diverse metabolic activities, but its contribution toward heterogeneous toxicological responses is poorly understood. In this study, we investigated the role of the liver-gut microbiota axis in underpinning the hepatotoxicity of tacrine. We employed an integrated strategy combining pharmacokinetics, toxicology, metabonomics, genomics, and metagenomics to elucidate and validate the mechanism of tacrine-induced hepatotoxicity in Lister hooded rats. Pharmacokinetic studies in rats demonstrated 3.3-fold higher systemic exposure to tacrine in strong responders that experienced transaminitis, revealing enhanced enterohepatic recycling of deglucuronidated tacrine in this subgroup, not attributable to variation in hepatic disposition gene expression. Metabonomic studies implicated variations in gut microbial activities that mapped onto tacrine-induced transaminitis. Metagenomics delineated greater deglucuronidation capabilities in strong responders, based on differential gut microbial composition (e.g., Lactobacillus, Bacteroides, and Enterobacteriaceae) and approximately 9% higher β-glucuronidase gene abundance compared with nonresponders. In the validation study, coadministration with oral β-glucuronidase derived from Escherichia coli and pretreatment with vancomycin and imipenem significantly modulated the susceptibility to tacrine-induced transaminitis in vivo.

Conclusion: This study establishes pertinent gut microbial influences in modifying the hepatotoxicity of tacrine, providing insights for personalized medicine initiatives. (Hepatology 2018;67:282-295).

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biopsy, Needle
  • Chemical and Drug Induced Liver Injury / etiology*
  • Chemical and Drug Induced Liver Injury / pathology
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Gastrointestinal Microbiome / drug effects*
  • Immunohistochemistry
  • Liver Function Tests
  • Male
  • Random Allocation
  • Rats
  • Rats, Inbred Strains
  • Reference Values
  • Severity of Illness Index
  • Tacrine / pharmacokinetics
  • Tacrine / pharmacology
  • Tacrine / toxicity*

Substances

  • Tacrine