Excited State Dynamics of 6-Thioguanine

J Phys Chem A. 2017 Jul 20;121(28):5257-5266. doi: 10.1021/acs.jpca.7b03036. Epub 2017 Jul 6.

Abstract

Here we present the excited state dynamics of jet-cooled 6-thioguanine (6-TG), using resonance-enhanced multiphoton ionization (REMPI), IR-UV double resonance spectroscopy, and pump-probe spectroscopy in the nanosecond and picosecond time domains. We report data on two thiol tautomers, which appear to have different excited state dynamics. These decay to a dark state, possibly a triplet state, with rates depending on tautomer form and on excitation wavelength, with the fastest rate on the order of 1010 s-1. We also compare 6-TG with 9-enolguanine, for which we observed decay to a dark state with a 2 orders of magnitude smaller rate. At increased excitation energy (∼+500 cm-1) an additional pathway appears for the predominant thiol tautomer. Moreover, the excited state dynamics for 6-TG thiols is different from that recently predicted for thiones.