Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion

Thorac Cancer. 2017 Sep;8(5):461-470. doi: 10.1111/1759-7714.12467. Epub 2017 Jun 29.

Abstract

Background: Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti-invasive activities, but the mechanisms remain largely unclear.

Methods: In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti-metastasis mechanisms of curcumin in human non-small cell lung cancer A549 cell line.

Results: Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin-treated and control groups. miR-330-5p exhibited maximum upregulation, while miR-25-5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen-activated protein kinase, transforming growth factor-β, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let-7a-3p, miR-1262, miR-499a-5p, miR-1276, miR-331-5p, and miR-330-5p were identified as key microRNA regulators in the network. Finally, using miR-330-5p as an example, we confirmed the role of miR-330-5p in mediating the anti-migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity.

Conclusion: Our findings provide new insights into the anti-metastasis mechanism of curcumin in lung cancer.

Keywords: Curcumin; gene expression profile; lung cancer; metastasis; miRNA expression profile.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • A549 Cells
  • Antineoplastic Agents / pharmacology*
  • Carcinoma, Non-Small-Cell Lung / drug therapy
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Curcumin / pharmacology*
  • Gene Expression Profiling / methods*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Gene Regulatory Networks / drug effects
  • Humans
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics*
  • MicroRNAs / genetics
  • Neoplasm Invasiveness
  • Signal Transduction / drug effects

Substances

  • Antineoplastic Agents
  • MIRN25 microRNA, human
  • MIRN330 microRNA, human
  • MicroRNAs
  • Curcumin