Purpose: Mild cognitive impairment (MCI) is a transitional pathological stage between normal ageing (NA) and Alzheimer's disease (AD). Although subjects with MCI show a decline at different rates, some individuals remain stable or even show an improvement in their cognitive level after some years. We assessed the accuracy of FDG PET in discriminating MCI patients who converted to AD from those who did not.
Methods: FDG PET was performed in 42 NA subjects, 27 MCI patients who had not converted to AD at 5 years (nc-MCI; mean follow-up time 7.5 ± 1.5 years), and 95 MCI patients who converted to AD within 5 years (MCI-AD; mean conversion time 1.8 ± 1.1 years). Relative FDG uptake values in 26 meta-volumes of interest were submitted to ANCOVA and support vector machine analyses to evaluate regional differences and discrimination accuracy.
Results: The MCI-AD group showed significantly lower FDG uptake values in the temporoparietal cortex than the other two groups. FDG uptake values in the nc-MCI group were similar to those in the NA group. Support vector machine analysis discriminated nc-MCI from MCI-AD patients with an accuracy of 89% (AUC 0.91), correctly detecting 93% of the nc-MCI patients.
Conclusion: In MCI patients not converting to AD within a minimum follow-up time of 5 years and MCI patients converting within 5 years, baseline FDG PET and volume-based analysis identified those who converted with an accuracy of 89%. However, further analysis is needed in patients with amnestic MCI who convert to a dementia other than AD.
Keywords: Alzheimer’s disease; Conversion to AD; Mild cognitive impairment; Positron emission tomography; Support vector machine; Volume of interest analysis.