Aortic valve stenosis (AVS) is associated with significant myocardial fibrosis (MF). Global longitudinal strain (GLS) is a sensible indicator of systolic dysfunction. ST2 is a member of the interleukin (IL)-1 receptor family and a modulator of hypertrophic and fibrotic responses. We aimed at assessing: (a) the association between adverse LV remodeling, LV functional parameters (including GLS) and sST2 level. (b) The association between MF (detected by endo-myocardial biopsy) and sST2 in patients with AVS undergoing surgical valve replacement. Twenty-two patients with severe AVS and preserved EF underwent aortic valve replacement. They performed laboratory analysis, including serum ST2 (sST2), echocardiography and inter-ventricular septum biopsy to assess MF (%). We included ten controls for comparison. Compared to controls, patients showed higher sST2 levels (p < 0.0001). sST2 showed correlation with Age (r = 0.58; p = 0.0004), E/e' average (r = 0.58; p = 0.0007), GLS (r = 0.61; p = 0.0002), LAVi (r = 0.51; p = 0.003), LVMi (r = 0.43; p = 0.01), sPAP (r = 0.36; p = 0.04) and SVi (r = -0.47; p < 0.005). No correlation was found between MF and sST2. At ROC analysis, a sST2 ≥ 284 ng/mL had the best accuracy to discriminate controls from patients with impaired GLS, i.e. GLS ≤ 17% (AUC 0.80; p = 0.003; sensitivity 95%; specificity 83%) and increased E/e' average (AUC 0.87; p = 0.0001; sensitivity 96%; specificity 74%). At multivariate regression analysis GLS resulted the only independent predictor of sST2 levels (R2 = 0.35; p = 0.0004). Patients with severe AVS present elevated sST2 levels. LV GLS resulted the only independent predictor of sST2 levels.
Keywords: Aortic stenosis; Global longitudinal strain; Left ventricular hypertrophy; Myocardial fibrosis; ST2.