Following myocardial infarction (MI), resident innate immune cells such as macrophages, innate lymphoid cells, and mast cells rapidly coordinate their function to contain inflammation by removing dying cells and promoting cardiomyocyte replenishment. To sustain local tissue repair functions, hematopoietic progenitors are mobilized from the bone marrow to the spleen to generate subsequent myeloid cells such as monocytes and neutrophils, which are rapidly recruited at the site of MI. A finely tuned balance between local adaptation and recruitment controls the overall outcome of the cardiac tissue regeneration versus repair and scar formation.In this chapter, the (potential) roles of the innate immune system residing in the heart are discussed in the context of recent findings about macrophage ontogeny and their homeostasis with circulating monocytes during cardiac tissue growth and after myocardial infarction. Their interactions with other members of the innate immune system are also discussed with a particular emphasis on the potential involvement of mast cells and innate lymphoid cells during MI, largely underestimated until recently. Understanding the development and the functions of the different protagonists responding to MI as well as their potential cross talk could help design new strategies for regenerative medicine intervention.
Keywords: Extramedullary hematopoiesis; Innate lymphoid cells; Macrophage ontogeny; Mast cells; Myocardial infarction.