Discovery of novel dengue virus entry inhibitors via a structure-based approach

Bioorg Med Chem Lett. 2017 Aug 15;27(16):3851-3855. doi: 10.1016/j.bmcl.2017.06.049. Epub 2017 Jun 23.

Abstract

Dengue is a mosquito-borne virus that has become a major public health concern worldwide in recent years. However, the current treatment for dengue disease is only supportive therapy, and no specific antivirals are available to control the infections. Therefore, the need for safe and effective antiviral drugs against this virus is of utmost importance. Entry of the dengue virus (DENV) into a host cell is mediated by its major envelope protein, E. The crystal structure of the E protein reveals a hydrophobic pocket occupied by the detergent n-octyl-β-d-glucoside (β-OG) lying at a hinge region between domains I and II, which is important for the low-pH-triggered conformational rearrangement required for fusion. Thus, the E protein is an attractive target for the development of antiviral agents. In this work, we performed prospective docking-based virtual screening to identify small molecules that likely bind to the β-OG binding site. Twenty-three structurally different compounds were identified and two of them had an EC50 value in the low micromolar range. In particular, compound 2 (EC50=3.1μM) showed marked antiviral activity with a good therapeutic index. Molecular dynamics simulations were used in an attempt to characterize the interaction of 2 with protein E, thus paving the way for future ligand optimization endeavors. These studies highlight the possibility of using a new class of DENV inhibitors against dengue.

Keywords: Anti-dengue drugs; Envelope protein; Molecular dynamics; Structure-based drug design; Virtual screening.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antiviral Agents / chemical synthesis
  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacology*
  • Caco-2 Cells
  • Dengue Virus / drug effects*
  • Dose-Response Relationship, Drug
  • Drug Discovery*
  • Humans
  • Microbial Sensitivity Tests
  • Molecular Dynamics Simulation
  • Molecular Structure
  • Small Molecule Libraries / chemical synthesis
  • Small Molecule Libraries / chemistry
  • Small Molecule Libraries / pharmacology*
  • Structure-Activity Relationship
  • Virus Internalization / drug effects*

Substances

  • Antiviral Agents
  • Small Molecule Libraries