Role of Saccharomyces cerevisiae TAN1 (tRNA acetyltransferase) in eukaryotic initiation factor 2B (eIF2B)-mediated translation control and stress response

3 Biotech. 2017 Jul;7(3):223. doi: 10.1007/s13205-017-0857-8. Epub 2017 Jul 4.

Abstract

Eukaryotic initiation factor 2B (eIF2B) controls the first step of translation by catalyzing guanine nucleotide exchange on eukaryotic initiation factor 2 (eIF2). Mutations in the genes encoding eIF2B subunits inhibit the nucleotide exchange and eventually slow down the process of translation, causing vanishing white matter disease. We constructed a Saccharomyces cerevisiae genomic DNA library in YEp24 vector and screened it for the identification of extragenic suppressors of eIF2B mutations, corresponding to human eIF2B mutations. We found a suppressor-II (Sup-II) genomic clone, as suppressor of eIF2Bβ (gcd7-201) mutation. Identification of Sup-II reveals the presence of truncated SEC15, full-length TAN1 (tRNA acetyltransferase), full-length EMC4, full-length YGL230C (putative protein) and truncated SAP4 genes. Full-length TAN1 (tRNA acetyltransferase) gene, subcloned into pEG(KG) vector and overexpressed in gcd7-201 gcn2∆ strain, suppresses the slow-growth (Slg-) and general control derepression (Gcd-) phenotype of gcd7-201 gcn2∆ mutation, but YGL230C did not show any effect. A GST-Tan1p fusion protein of 60 kDa was detected by western blotting using α-GST antibodies. Interestingly, Tan1p overexpression also suppresses the temperature-sensitive (Ts-), Slg- and Gcd- phenotype of eIF2Bγ (gcd1-502) mutant. Role of Tan1p protein in eIF2B-mediated translation regulation was also studied. Results revealed that Tan1p overexpression confers resistance to GCD7 GCN2, gcd7-201 gcn2∆, GCD7 gcn2∆ growth defect under ethanol, H2O2 and caffeine stress. No resistance to DMSO-, NaCl- and DTT-mediated growth defect upon GCD7 gcn2∆, GCD7 GCN2, gcd7-201 gcn2∆ was observed by overexpression of TAN1. Hence, we proposed that Tan1p is involved directly or indirectly in regulating eIF2B-mediated translation.

Keywords: Caffeine; Ethanol; H2O2; Tan1 p; Translation; VWM; eIF2B.