Low-temperature solution processing opens a new window for the fabrication of oxide semiconductors due to its simple, low cost, and large-area uniformity. Herein, by using solution combustion synthesis (SCS), p-type Cu-doped NiO (Cu:NiO) thin films are fabricated at a temperature lower than 150 °C. The light doping of Cu substitutes the Ni site and disperses the valence band of the NiO matrix, leading to an enhanced p-type conductivity. Their integration into thin-film transistors (TFTs) demonstrates typical p-type semiconducting behavior. The optimized Cu5% NiO TFT exhibits outstanding electrical performance with a hole mobility of 1.5 cm2 V-1 s-1 , a large on/off current ratio of ≈104 , and clear switching characteristics under dynamic measurements. The employment of a high-k ZrO2 gate dielectric enables a low operating voltage (≤2 V) of the TFTs, which is critical for portable and battery-driven devices. The construction of a light-emitting-diode driving circuit demonstrates the high current control capability of the resultant TFTs. The achievement of the low-temperature-processed Cu:NiO thin films via SCS not only provides a feasible approach for low-cost flexible p-type oxide electronics but also represents a significant step toward the development of complementary metal-oxide semiconductor circuits.
Keywords: low-temperature processing; low-voltage operation; p-type oxide semiconductor; solution combustion synthesis; thin-film transistor.
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.