Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems

Environ Sci Technol. 2017 Aug 15;51(16):9261-9270. doi: 10.1021/acs.est.7b01856. Epub 2017 Jul 25.

Abstract

Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.

MeSH terms

  • Environment*
  • Environmental Pollutants / analysis
  • Poaceae*
  • Transportation
  • Vehicle Emissions
  • Wastewater*
  • Water Movements

Substances

  • Environmental Pollutants
  • Vehicle Emissions
  • Waste Water