The presence of a mixture of progestogens at ng/L concentration levels in surface waters is a worldwide problem. Only a few studies explore the effect of progestogen treatment in a mixture as opposed to individual chemicals to shed light on how non-target species respond to these contaminants. In the present study, we used an invertebrate model species, Lymnaea stagnalis, exposed to a mixture of four progestogens (progesterone, levonorgestrel, drospirenone, and gestodene) in 10ng/L concentration for 3 weeks. Data at both physiological and cellular/molecular level were analyzed using the ELISA technique, stereomicroscopy combined with time lapse software, and capillary microsampling combined with mass spectrometry. The treatment of adult Lymnaeas caused reduced egg production, and low quality egg mass on the first week, compared to the control. Starting from the second week, the egg production, and the quality of egg mass were similar in both groups. At the end of the third week, the egg production and the vitellogenin-like protein content of the hepatopancreas were significantly elevated in the treated group. At the cellular level, accelerated cell proliferation was observed during early embryogenesis in the treated group. The investigation of metabolomic changes resulted significantly elevated hexose utilization in the single-cell zygote cytoplasm, and elevated adenylate energy charge in the egg albumen. These changes suggested that treated snails provided more hexose in the eggs in order to improve offspring viability. Our study contributes to the knowledge of physiological effect of equi-concentration progestogen mixture at environmentally relevant dose on non-target aquatic species.
Keywords: Adenylate energy charge; Capillary microsampling; Egg mass quality; Lymnaea; Metabolomic analysis; Progestogen exposure.
Copyright © 2017 Elsevier B.V. All rights reserved.