Prediction of clinical depression scores and detection of changes in whole-brain using resting-state functional MRI data with partial least squares regression

PLoS One. 2017 Jul 12;12(7):e0179638. doi: 10.1371/journal.pone.0179638. eCollection 2017.

Abstract

In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area.

MeSH terms

  • Adult
  • Aged
  • Brain / diagnostic imaging*
  • Case-Control Studies
  • Depression / classification
  • Depression / diagnostic imaging*
  • Female
  • Humans
  • Least-Squares Analysis
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged

Grants and funding

This research is supported by the Strategic Research Program for Brain Sciences from Japan Agency for Medical Research and development, AMED (http://www.amed.go.jp/en). All authors of this study are supported by this program. This program does not have a grant number. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.