Trigeminal neuralgia (TN) is a chronic neuropathic facial pain disorder that commonly responds to surgery. A proportion of patients, however, do not benefit and suffer ongoing pain. There are currently no imaging tools that permit the prediction of treatment response. To address this paucity, we used diffusion tensor imaging (DTI) to determine whether pre-surgical trigeminal nerve microstructural diffusivities can prognosticate response to TN treatment. In 31 TN patients and 16 healthy controls, multi-tensor tractography was used to extract DTI-derived metrics-axial (AD), radial (RD), mean diffusivity (MD), and fractional anisotropy (FA)-from the cisternal segment, root entry zone and pontine segment of trigeminal nerves for false discovery rate-corrected Student's t-tests. Ipsilateral diffusivities were bootstrap resampled to visualize group-level diffusivity thresholds of long-term response. To obtain an individual-level statistical classifier of surgical response, we conducted discriminant function analysis (DFA) with the type of surgery chosen alongside ipsilateral measurements and ipsilateral/contralateral ratios of AD and RD from all regions of interest as prediction variables. Abnormal diffusivity in the trigeminal pontine fibers, demonstrated by increased AD, highlighted non-responders (n = 14) compared to controls. Bootstrap resampling revealed three ipsilateral diffusivity thresholds of response-pontine AD, MD, cisternal FA-separating 85% of non-responders from responders. DFA produced an 83.9% (71.0% using leave-one-out-cross-validation) accurate prognosticator of response that successfully identified 12/14 non-responders. Our study demonstrates that pre-surgical DTI metrics can serve as a highly predictive, individualized tool to prognosticate surgical response. We further highlight abnormal pontine segment diffusivities as key features of treatment non-response and confirm the axiom that central pain does not commonly benefit from peripheral treatments.
Keywords: (AD), axial diffusivity; (DTI), diffusion tensor imaging; (FA), fractional anisotropy; (FSPGR), fast spoiled gradient-echo; (GKRS), Gamma Knife radiosurgery; (MD), mean diffusivity; (MR), magnetic resonance; (MVD), microvascular decompression; (RD), radial diffusivity; (ROI), region of interest; (TN), trigeminal neuralgia; (XST), eXtended Streamline Tractography; Chronic facial pain; Multi-tensor tractography; Surgical outcome; Treatment response prediction; Trigeminal neuralgia.