Earth-abundant NiO/anatase TiO2 heteronanostructures were prepared by a straightforward one-pot sol-gel synthetic route followed by a suitable thermal post-treatment. The resulting 0.1-4 wt% NiO-decorated anatase TiO2 nanoparticles were characterized by X-ray diffraction, electron microscopy, Raman and UV-visible spectroscopy and N2 sorption analysis, and showed both nanocrystallinity and mesoporosity. The careful determination of the energy band alignment diagram by a suitable combination of XPS/UPS and absorption spectroscopy data revealed significant band bending at the interface of the p-n NiO/anatase TiO2 heterojunction nanoparticles. Furthermore, these heterojunction photocatalysts exhibited an improved photocatalytic activity in H2 production by methanol photoreforming compared to pure anatase TiO2 and commercial P25. Thus, an average H2 production rate of 2693 μmol h-1 g-1 was obtained for the heterojunction of a 1 wt% NiO/anatase photocatalyst, which is one of the most efficient NiO/anatase TiO2 systems ever reported. An enhanced dissociation efficiency of the photogenerated electron-hole pairs resulting from an internal electric field developed at the interface of the NiO/anatase TiO2 p-n heterojunctions is suggested to be the reason of this enhanced photocatalytic activity.