Pasteurella multocida causes acute septicemic and respiratory diseases, including haemorrhagic septicaemia, in cattle and buffalo with case fatality of 100%. In the present study, mice were infected with P. multocida (1.6 × 103 cfu, intraperitoneal) to evaluate host gene expression profile at early and late stages of infection using high throughput microarray transcriptome analyses. Several differentially expressed genes (DEGs) at both the time points were identified in P.multocida infected spleen, liver and lungs. Functional annotation of these DEGs showed enrichment of key pathways such as TLR, NF-κB, MAPK, TNF, JAK-STAT and NOD like receptor signaling pathways. Several DEGs overlapped across different KEGG pathways indicating a crosstalk between them. The predicted protein-protein interaction among these DEGs suggested, that the recognition of P. multocida LPS or outer membrane components by TLR4 and CD14, results in intracellular signaling via MyD88, IRAKs and/or TRAF6 leading to activation of NFκB and MAPK pathways and associated cytokines.