Objective: The precision and accuracy of a quantitative magnetic resonance (EchoMRI Infants) system in newborns were determined.
Methods: Canola oil and drinking water phantoms (increments of 10 g to 1.9 kg) were scanned four times. Instrument reproducibility was assessed from three scans (within 10 minutes) in 42 healthy term newborns (12-70 hours post birth). Instrument precision was determined from the coefficient of variation (CV) of repeated scans for total water, lean mass, and fat measures for newborns and the mean difference between weight and measurement for phantoms. In newborns, the system accuracy for total body water (TBW) was tested against deuterium dilution (D2 O).
Results: In phantoms, the repeatability and accuracy of fat and water measurements increased as the weight of oil and water increased. TBW was overestimated in amounts >200 g. In newborns weighing 3.14 kg, fat, lean mass, and TBW were 0.52 kg (16.48%), 2.28 kg, and 2.40 kg, respectively. EchoMRI's reproducibility (CV) was 3.27%, 1.83%, and 1.34% for total body fat, lean mass, and TBW, respectively. EchoMRI-TBW values did not differ from D2 O; mean difference, -1.95 ± 6.76%, P = 0.387; mean bias (limits of agreement), 0.046 kg (-0.30 to 0.39 kg).
Conclusions: The EchoMRI Infants system's precision and accuracy for total body fat and lean mass are better than established techniques and equivalent to D2 O for TBW in phantoms and newborns.
© 2017 The Obesity Society.