The catalytic promiscuity of a ferulic acid decarboxylase from Enterobacter sp. (FDC_Es) and phenolic acid decarboxylases (PADs) for the asymmetric conjugate addition of water across the C=C bond of hydroxystyrenes was extended to the N-, C- and S-nucleophiles methoxyamine, cyanide and propanethiol to furnish the corresponding addition products in up to 91% ee. The products obtained from the biotransformation employing the most suitable enzyme/nucleophile pairs were isolated and characterized after optimizing the reaction conditions. Finally, a mechanistic rationale supported by quantum mechanical calculations for the highly (S)-selective addition of cyanide is proposed.
Keywords: biocatalysis; catalytic promiscuity; decarboxylase; hydration; hydroxystyrene; nucleophile addition.