The success of positron emission tomography (PET) for observing molecular processes underlying brain function and disease is underpinned by radiotracer chemistry. From the earliest applications of PET to measure dopamine synthesis capacity and the abundance of neuroreceptors and transporters, to the more recent topic of dynamic neurochemical imaging, interrogation of brain dopamine in conditions such as neurodegenerative diseases, schizophrenia, mood disorders, and addictions has been a driving force that challenges the ingenuity of radiopharmaceutical scientists. In fact, the pursuit of new ligands and reaction methods to address longstanding challenges has often been pioneered in the context of dopamine imaging. From this viewpoint, we highlight the unique history of imaging the dopaminergic pathway with PET, and present our interpretation of how this worldwide effort shaped and continues to drive the field of molecular imaging.
Keywords: PET; dopaminergic pathway; molecular imaging.