Developing thiosulfate (S2O32-) sensors with silver nanoparticles (AgNPs) for analysis of aqueous solutions with the interference of other anions remains challenging. In this study, we propose a new strategy for excellent selective colorimetric detection of S2O32-. The nonmorphological transition of AgNPs leading to a color change from yellow to brown is verified by UV-vis, TEM, DLS, SEM, and XPS analyses. The sensor exhibits high sensitivity with detection limits of 1.0 μM by naked-eye determination and 0.2 μM by UV-vis spectroscopy analysis. The linear relationship (R2 = 0.998) between the (A0 - A)/A0 values and S2O32- concentrations from 0.2 μM to 2.0 μM indicates that the fabricated AgNPs-based colorimetric sensor can be employed for quantitative assay of S2O32-. Colorimetric responses are also monitored using the built-in camera of a smartphone. The sensor shows a linear response to S2O32- in 0-20.0 μM solutions under the optimized conditions and is thus more suitable for rapid on-site tests than other detection methods. A smartphone application (app) is downloaded under Android or IOS platforms to measure the RGB (red, green, blue) values of the colorimetric sensor after exposure to the analyte. Following data processing, the RGB values are converted into concentration values by using preloaded calibration curves. Confirmatory analysis indicates that the proposed S2O32- colorimetric sensor exhibits feasibility and sensitivity for S2O32- detection in real environmental samples.
Keywords: RGB; colorimetric sensor; silver nanoparticles; smartphone-based analysis; thiosulfate.