Ethnopharmacologic relevance: Berberine (BBR) is a naturally occurring alkaloid compound that can be found in Chinese medicinal herbs such as Rhizoma Coptidis and Phellodendri Cortex. These BBR containing herbs are commonly used by Chinese medicine doctors to treat cancers including melanoma. In this study, we explored proteins potentially involved in the anti-melanoma effects of BBR using computational and experimental approaches.
Materials and methods: Target proteins of BBR were predicted using the reverse pharmacophore screening, molecular docking and molecular dynamics. Anti-melanoma activities of BBR in melanoma cells were examined by MTT and EdU proliferation assays. Effects of BBR on activities of target proteins in melanoma cells were examined by Western blotting or fluorescence assay.
Results: Ten proteins implicated in cancer and with high fit-score in the reverse pharmacophore screening were selected as potential targets of BBR. Molecular docking and molecular dynamics revealed that BBR could stably bind to four of the ten proteins, namely 3-phosphoinositide-dependent protein kinase 1 (PDK1), glucocorticoid receptor (GR), p38 mitogen-activated protein kinase (p38) and dihydroorotate dehydrogenase (DHODH). Cellular experiments showed that BBR inhibited cell proliferation, increased the phosphorylation of GR and p38, and inhibited the activity of DHODH in A375 human melanoma cells.
Conclusions: These findings suggest that p38, GR and DHODH are potentially involved in the anti-melanoma action of BBR. This study provided a chemical and pharmacological justification for the clinical use of BBR-containing herbs in melanoma treatment.
Keywords: Berberine; Berberine (PubChem CID: 2353); Melanoma; Molecular docking; Reverse pharmacophore mapping.
Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.