We report the synthesis, characterization, and detailed comparison of a series of novel Pt-bisacetylide containing conjugated small molecules possessing an unconventional "roller-wheel" shaped structure that is distinctly different from the "dumbbell" designs in traditional Pt-bisacetylide containing conjugated polymers and small molecules. The relationships between the chemical nature and length of the "rollers" and the electronic and physical properties of the materials are carefully studied by steady-state spectroscopy, cyclic voltammetry, differential scanning calorimetry, single-crystal X-ray diffraction, transient absorption spectroscopy, theoretical calculation, and device application. It was revealed that if the roller are long enough, these molecules can "slip-stack" in the solid state, leading to high crystallinity and charge mobility. Organic solar cells were fabricated and showed power conversion efficiencies up to 5.9%, out-performing all existing Pt-containing materials. The device performance was also found to be sensitive to optimization conditions and blend morphologies, which are a result of the intricate interplay among materials crystallinity, phase separation, and the relative positions of the lowest singlet and triplet excited states.