A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans

Genetics. 2017 Sep;207(1):215-228. doi: 10.1534/genetics.117.1125. Epub 2017 Jul 24.

Abstract

Renal agenesis (RA) is one of the more extreme examples of congenital anomalies of the kidney and urinary tract (CAKUT). Bilateral renal agenesis is almost invariably fatal at birth, and unilateral renal agenesis can lead to future health issues including end-stage renal disease. Genetic investigations have identified several gene variants that cause RA, including EYA1, LHX1, and WT1 However, whereas compound null mutations of genes encoding α and γ retinoic acid receptors (RARs) cause RA in mice, to date there have been no reports of variants in RAR genes causing RA in humans. In this study, we carried out whole exome sequence analysis of two families showing inheritance of an RA phenotype, and in both identified a single candidate gene, GREB1L Analysis of a zebrafish greb1l loss-of-function mutant revealed defects in the pronephric kidney just prior to death, and F0 CRISPR/Cas9 mutagenesis of Greb1l in the mouse revealed kidney agenesis phenotypes, implicating Greb1l in this disorder. GREB1L resides in a chromatin complex with RAR members, and our data implicate GREB1L as a coactivator for RARs. This study is the first to associate a component of the RAR pathway with renal agenesis in humans.

Keywords: CAKUT; GREB1L; renal agenesis; retinoic acid; whole exome sequencing.

MeSH terms

  • Animals
  • Congenital Abnormalities / genetics*
  • Congenital Abnormalities / pathology
  • Exome
  • Female
  • Humans
  • Kidney / abnormalities*
  • Kidney / embryology
  • Kidney / metabolism
  • Kidney / pathology
  • Kidney Diseases / congenital*
  • Kidney Diseases / genetics
  • Kidney Diseases / pathology
  • Loss of Function Mutation
  • Male
  • Membrane Proteins
  • Mice
  • Neoplasm Proteins / genetics*
  • Neoplasm Proteins / metabolism
  • Pedigree
  • Proteins / genetics
  • Proteins / metabolism
  • Receptors, Retinoic Acid / genetics
  • Receptors, Retinoic Acid / metabolism
  • Zebrafish
  • Zebrafish Proteins / genetics
  • Zebrafish Proteins / metabolism

Substances

  • GREB1 protein, human
  • KIAA0575 protein, mouse
  • Membrane Proteins
  • Neoplasm Proteins
  • Proteins
  • Receptors, Retinoic Acid
  • Zebrafish Proteins
  • greb1 protein, zebrafish

Supplementary concepts

  • Hereditary renal agenesis