Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C-H Bond

J Am Chem Soc. 2017 Aug 9;139(31):10790-10798. doi: 10.1021/jacs.7b05130. Epub 2017 Aug 1.

Abstract

Nanostructured Fe-N-C materials represent a new type of "platinum-like" non-noble-metal catalyst for various electrochemical reactions and organic transformations. However, no consensus has been reached on the active sites of the Fe-N-C catalysts because of their heterogeneity in particle size and composition. In this contribution, we have successfully prepared atomically dispersed Fe-N-C catalyst, which exhibited high activity and excellent reusability for the selective oxidation of the C-H bond. A wide scope of substrates, including aromatic, heterocyclic, and aliphatic alkanes, were smoothly oxidized at room temperature, and the selectivity of corresponding products reached as high as 99%. By using sub-ångström-resolution HAADF-STEM in combination with XPS, XAS, ESR, and Mössbauer spectroscopy, we have provided solid evidence that Fe is exclusively dispersed as single atoms via forming FeNx (x = 4-6) and that the relative concentration of each FeNx species is critically dependent on the pyrolysis temperature. Among them, the medium-spin FeIIIN5 affords the highest turnover frequency (6455 h-1), which is at least 1 order of magnitude more active than the high-spin and low-spin FeIIIN6 structures and 3 times more active than the FeIIN4 structure, although its relative concentration in the catalysts is much lower than that of the FeIIIN6 structures.

Publication types

  • Research Support, Non-U.S. Gov't