Porous g-C3N4 nanosheet (PCNS) photocatalyst with a thickness of 2.0 nm, pore volume of 0.61 cm3 g-1, and surface area of 190.1 m2 g-1 was prepared by a simple two-step template-free approach without the addition of extra reagents. Compared with the bulk g-C3N4 (BCN), PCNS possesses a greater number of surface reactive sites, improved efficiency of charge transfer, and accelerated separation of photogenerated electron-hole pairs. Accordingly, the visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of PCNS are significantly enhanced. Escherichia coli (E. coli) cells can be killed completely by PCNS within 4 h, whereas only 77.1% of E. coli cells can be killed by BCN. The photodegradation rates of PCNS on methylene blue, Acid Red 27, and bisphenol A are almost 6.4, 4.0, and 1.9 times as fast as that of BCN, respectively. The photocurrent intensity of PCNS is about 3.7 times in comparison with that of BCN. Considering the easy preparation and excellent performance, PCNS could be a promising and competitive visible-light-driven photocatalyst in the field of environment remediation.
Keywords: disinfection; g-C3N4; mesoporosity; nanosheets; photocatalysis; pollutant degradation; visible light.