Dinuclear metal complexes have emerged as a promising class of anticancer compounds with the ability to cross-link biomolecular targets. Here, we describe two novel series of phosphine-linked dinuclear ruthenium(II) p-cymene and gold(I) complexes, in which the length of the connecting poly(ethylene glycol) chain has been systematically modified. The impact of the multinuclearity, lipophilicity, and linker length on the antiproliferative activity of the compounds on tumorigenic (A2780 and A2780cisR) and nontumorigenic (HEK-293) cell lines was assessed. The dinuclear ruthenium(II) complexes were considerably more cytotoxic than their mononuclear counterparts, and a correlation between the lipophilicity of the linker and the cytotoxicity was observed, whereas the cytotoxicity of the gold(I) series is independent of these factors.