In vitro cleavage of bioactive peptides by peptidases from Bothrops jararaca venom and its neutralization by bothropic antivenom produced by Butantan Institute: Major contribution of serine peptidases

Toxicon. 2017 Oct:137:114-119. doi: 10.1016/j.toxicon.2017.07.020. Epub 2017 Jul 28.

Abstract

In Brazil, envenomation by Bothrops pitvipers is responsible for over 73% of snakebites, and their venom is a rich source of proteolytic enzymes. Most studies have demonstrated that Bothrops jararaca venom acts on macromolecular substrates, causing an imbalance in the victim's hemostatic system. In contrast, fewer studies have examined the proteolytic activity on small molecules such as peptides. In this study, we used a set of bioactive peptides (insulin B chain, Met-enkephalin, Leu-enkephalin, neuropeptide Y, peptide YY, pancreatic polypeptide, substance P and somatostatin) to identify new peptide substrates for the metallopeptidases and serine peptidases from the B. jararaca venom. The majority of these peptides were substrates for the venom, but neuropeptide Y and pancreatic polypeptide presented higher hydrolyses rates. Although most of the peptides were simultaneously substrates for both classes of proteases, serine peptidases were the most active. Substance P was an exclusive substrate for metallopeptidases, while somatostatin was a selective substrate for serine peptidases. The neutralizing efficacy of the bothropic antivenom produced by the Butantan Institute was also assessed and found to totally prevent substance P hydrolysis, whereas somatostatin cleavage was not inhibited. Thus, the antivenom effectively inhibited metallopeptidase activity, but did not neutralize some of the serine peptidases. These results indicate that, in addition to cleaving proteins, the proteolytic enzymes from this venom also hydrolyze bioactive peptides, and this peptidase activity could effectively contribute to some of the many dire manifestations of envenomation.

Keywords: Antivenom; Bioactive peptides; Bothrops jararaca venom; Metallopeptidases; Serine peptidases.

MeSH terms

  • Animals
  • Antivenins / chemistry*
  • Bothrops
  • Crotalid Venoms / enzymology*
  • Metalloproteases / chemistry*
  • Neutralization Tests
  • Peptides / chemistry*
  • Serine Endopeptidases / chemistry*
  • Substrate Specificity

Substances

  • Antivenins
  • Crotalid Venoms
  • Peptides
  • Metalloproteases
  • Serine Endopeptidases