The risk of radiation-induced toxicity in patients treated for head and neck (HN) cancer with radiation therapy (RT) is traditionally estimated by condensing the 3D dose distribution into a monodimensional cumulative dose-volume histogram which disregards information on dose localization. We hypothesized that a voxel-based approach would identify correlations between radiation-induced morbidity and local dose release, thus providing a new insight into spatial signature of radiation sensitivity in composite regions like the HN district. This methodology was applied to a cohort of HN cancer patients treated with RT at risk of radiation-induced acute dysphagia (RIAD). We implemented an inter-patient elastic image registration framework that proved robust enough to match even the most elusive HN structures and to provide accurate dose warping. A voxel-based statistical analysis was then performed to test regional dosimetric differences between patients with and without RIAD. We identified a significantly higher dose delivered to RIAD patients in two voxel clusters in correspondence of the cricopharyngeus muscle and cervical esophagus. Our study goes beyond the well-established organ-based philosophy exploring the relationship between radiation-induced morbidity and local dose differences in the HN region. This approach is generally applicable to different HN toxicity endpoints and is not specific to RIAD.