In a 2-step genomic system, genotypes of animals without phenotypes do not influence genomic prediction of other animals, but that might not be the case in single-step systems. We investigated the effects of including genotypes from culled bulls on the reliability of genomic predictions from single-step evaluations. Four scenarios with a constant amount of phenotypic information and increasing numbers of genotypes from culled bulls were simulated and compared with respect to prediction reliability. With increasing numbers of genotyped culled bulls, there was a corresponding increase in prediction reliability. For instance, in our simulation scenario the reliability for selection candidates was twice as large when all culled bulls from the last 4 generations were included in the analysis. Single-step evaluations imply the imputation of all nongenotyped animals in the pedigree. We showed that this imputation was increasingly more accurate as increasingly more genotypic information from the culled bulls was taken into account. This resulted in higher prediction reliabilities. The extent of the benefit from including genotypes from culled bulls might be more relevant for small populations with low levels of reliabilities.
Keywords: SNP; genomic breeding value; imputation; numerator relationship.
The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).