Purpose: To evaluate the prognostic value and molecular basis of a CT-derived pleural contact index (PCI) in early stage non-small cell lung cancer (NSCLC).
Experimental design: We retrospectively analysed seven NSCLC cohorts. A quantitative PCI was defined on CT as the length of tumour-pleura interface normalised by tumour diameter. We evaluated the prognostic value of PCI in a discovery cohort (n = 117) and tested in an external cohort (n = 88) of stage I NSCLC. Additionally, we identified the molecular correlates and built a gene expression-based surrogate of PCI using another cohort of 89 patients. To further evaluate the prognostic relevance, we used four datasets totalling 775 stage I patients with publically available gene expression data and linked survival information.
Results: At a cutoff of 0.8, PCI stratified patients for overall survival in both imaging cohorts (log-rank p = 0.0076, 0.0304). Extracellular matrix (ECM) remodelling was enriched among genes associated with PCI (p = 0.0003). The genomic surrogate of PCI remained an independent predictor of overall survival in the gene expression cohorts (hazard ratio: 1.46, p = 0.0007) adjusting for age, gender, and tumour stage.
Conclusions: CT-derived pleural contact index is associated with ECM remodelling and may serve as a noninvasive prognostic marker in early stage NSCLC.
Key points: • A quantitative pleural contact index (PCI) predicts survival in early stage NSCLC. • PCI is associated with extracellular matrix organisation and collagen catabolic process. • A multi-gene surrogate of PCI is an independent predictor of survival. • PCI can be used to noninvasively identify patients with poor prognosis.
Keywords: Imaging biomarker; Lung cancer; Pleural contact; Prognosis; Radiogenomics.